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About my research

High-dimensional inference and adaptive decision making

Interests: MCMC sampling, Bayesian modeling, causal representation
learning, extreme values, uncertainty quantification and calibration, ...
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Molecular design: tale of correlated tails

• Goal: jointly optimize molecule for multiple competing properties
• Molecular properties tend to have long tails1 and tail correlations2

1Jain et al., “Biophysical properties of the clinical-stage antibody landscape” (2017).
2Wang et al., “ADME properties evaluation in drug discovery: prediction of Caco-2 cell

permeability using a combination of NSGA-II and boosting” (2016).
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Multi-objective Bayesian optimization (MOBO)

Problem
Optimizing a vector-valued objective f : Rd

→ RM with
f (x) = (f1(x), . . . , fM(x)) over a bounded set X ↑ Rd .

When f is an expensive black-box function (e.g., wet lab protocol),
Bayesian optimization o!ers a sample-e”cient method.3

4

3Jones, Schonlau, and Welch, “E!cient global optimization of expensive black-box functions”
(1998).
4Konakovic Lukovic, Tian, and Matusik, “Diversity-guided multi-objective bayesian optimization

with batch evaluations” (2020).
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The MOBO algorithm

Key components:

• Surrogate f̂ : Rd
→ RM tractably approximating f , with p(f̂ |D)

• Acquisition function af̂ : X → R capturing the “usefulness” of
each design, used to determine which design to evaluate next

• exploration (of highly uncertain designs)
• exploitation (of designs believed to be optimal)

MOBO proceeds in repeating cycles of

1. Fitting the surrogate on D = {(x (i), f (x (i))}N

i=1, to obtain p(f̂ |D)
2. Optimizing to obtain x→ = argmax

x↑X af̂ (x)
3. Appending the resulting measurement: D ↓ D ↔ {(x→, f (x→))}
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Dominance operators: notation

How to compare vectors in Euclidean spaces when M > 2?
Assume minimization. For y = (y1, . . . , yM), z = (z1, . . . , zM) ↗ RM ,

• z weakly dominates y
z ↭ y ↘≃ zi ⇐ yi ⇒i ↗ [M]

• z strictly dominates y
z ⊋ y ↘≃ zi ⇐ yi ⇒i ↗ [M] and ⇑k ↗ [M] : zk < yk

↘≃ z ↭ y and z ⇓= y
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Pareto front

Pareto front P of the set G is the subset containing points which are not
strictly dominated:

y → P ↑↓ ↔z → G , ¬(z ⊋ y),

and equiv. the subset of G that are weakly dominated only by themselves:5

y → P ↑↓ {z → G , z ↭ y} = {y}.

MOBO aims to obtain a finite approximation P̂ to the true Pareto front P.
5Warburton, “Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal

and weak Pareto-optimal alternatives” (1983).
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Quality indicators

Quality indicator I : 2Y
→ R

evaluates the quality of approximation set P̂.
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Hypervolume indicator

Example: hypervolume (HV)6 of polytope bounded from below by P̂

and from above by a reference point

• HV ⇔ O(n↓ M

2 ↔) → impractical for M>4 despite box decomposition7

• Sensitive to rescaling of the objectives, with di!erent natural units

6Emmerich, Deutz, and Klinkenberg, “Hypervolume-based expected improvement: Monotonicity
properties and exact computation” (2011).
7Yang et al., “A multi-point mechanism of expected hypervolume improvement for parallel

multi-objective bayesian global optimization” (2019).
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Hypervolume indicator: limitations
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Probabilistic perspective

Let Y = f (X ) ↗ RM , where X is a random vector with values in X .

y ↗ P =≃ P[ Y ↗ {z ↗ G , z ↭ y}︸ ︷︷ ︸
set weakly dom. y

] def= P[ Y ↗ {y} ] = 0

=≃ P[Y ↭ y ] := FY (y) = 0,

with FY (y) the cumulative distribution function (CDF) of Y.

Consider the ω level line of FY , εL
F

ω = {y ↗
↗ G , FY (y ↗) = ω}.

The Pareto front belongs to the zero (ω = 0) level line of FY !8

8Binois, Rullière, and Roustant, “On the estimation of Pareto fronts from the point of view of
copula theory” (2015).
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Connection between the CDF and the Pareto front
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CDF vs. PDF

FY1,...,YM
(y) = P[Y1 ⇐ y1, . . . , YM ⇐ ym] =

∫ (y1,...,yM )

(↘≃,...,↘≃)
fY (s)ds.

Figure 1: Level lines of the CDF (left) and the PDF (right) from kernel density
estimation based on 200 observations (gray dots). The zero level line of the
CDF closely traces the true Pareto front (solid red curve).
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Enter the CDF indicator9

We propose ICDF(A) := miny↑A (FY (y)) .

Weak Pareto compliance (Theorem 4.1)
For any arbitrary approximation sets A, B ↗ 2Y ,

A ⊋ B =≃ ICDF (A) ⇐ ICDF (B).

9Park et al., “BOtied: Multi-objective Bayesian optimization with tied multivariate ranks” (2023).



14

E!cient fitting of CDF with vine copulas

We can pairwise decompose an M-dim copula density into a product of
M(M↖1)/2 bivariate conditional densities (“pair copulas”) organized in a
sequence of trees (“vine”)10

⇔ O(nML), where L ↗ {1, . . . , M} is depth

marginals copula+joint distribution
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Model-based Pareto front

Domain knowledge or information from unpaired observations of Y
(without X associations) can be encoded in the choices of

• marginal distributions
• pair copula models
• vine structure
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Desirable invariance properties

CDF is invariant to arbitrary monotonic transformations of objectives,
while HV is very sensitive. Important due to common unit conversions
(e.g., linear µm → nm, loglike KD → pKD to remove tails)!
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MOBO acquisition function

The acquisition function af̂ : X → R quantifies the expected utility of
each design based on predictions by the surrogate f̂ .
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MOBO acquisition function

Recall each cycle of the MOBO algorithm:

1. Fitting the surrogate to obtain p(f̂ |D)
2. Optimizing to obtain x→ = argmax

x↑X af̂ (x)
• Gradient-based (exact or estimated)
• Gradient-free11 ↫

3. Appending the resulting measurement: D ↓ D ↔ {(x→, f (x→))}

11Hansen, “The CMA evolution strategy: a comparing review” (2006).
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Acquisition function: general form

af̂ (x) = E
f̂ ⇐p(·|D)[ u f̂ (x)︸ ︷︷ ︸

utility

] =
∫

u f̂ (x) p(f̂ |D)df̂
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Expected hypervolume improvement (EHVI)12

aEHVI(x) =
∫ [

IHV

(
P̂ ↔ {f̂ (x)}

)
↖ IHV

(
P̂

) ]

︸ ︷︷ ︸
HV improvement:

how much x is predicted to improve on current PF

p(f̂ |D)df̂

12Emmerich, Deutz, and Klinkenberg, “Hypervolume-based expected improvement: Monotonicity
properties and exact computation” (2011).
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Acquisition function based on the CDF indicator

We propose BOtied, the expected CDF:

aCDF (x) =
∫ [

1 ↖ F̂Y

(
f̂ (x)

) ]
p(f̂ |D)df̂ ,

where F̂Y is the CDF fit on {y : (x , y) ↗ D} ↔ {f̂ (X )}.*

*In practice, we draw samples x ↗
⇔ X .
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Empirical results

BOtied outperforms EHVI on standard synthetic benchmark problems for
MOBO, even in terms of HV.

Figure 2: Metric vs. iterations for two synthetic problems.
Metric: log(!HV) := log

(
HV (P) ↘ HV (P̂)

)
(lower is better)
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Empirical results

BOtied e!ectively acquires samples along the Pareto front for the
Branin-Currin13 (d=2, M=2) test function.

Figure 3: 1K samples from Branin-Currin overlaid with BOtied-acquired P̂ and
level lines of CDF fit on 86 datapoints at final iteration (not shown).

13Belakaria, Deshwal, and Doppa, “Max-value entropy search for multi-objective Bayesian
optimization” (2019).
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Empirical results

As metrics, the CDF and HV indicators are consistent.
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Empirical results

BOtied outperforms EHVI on a real-world dataset of measured hemical
properties carrying long tails.

Figure 4: Metric vs. iterations for the modified Caco2 dataset
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Computational e!ciency

• Vine copula implementation makes BOtied very fast relative to EHVI
and joint entropy search (JES), both involving M-dim integrals

• BOtied has competitive wall-clock time with ParEGO, which
randomly scalarizes the objectives (e!ectively M = 1)

Per function evaluation:
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Summary and outlook

We propose BOtied, a multi-objective acquisition function that leverages
CDF-based multivariate ranking.

• e”ciently implemented using vine copulas for M > 3 objectives
• invariant to monotonic transformations of objectives
• enables integration of domain knowledge in model-based

construction of Pareto front

Framework is general → hierarchical Bayesian inference, constrained,
mixed/discrete...
Follow-up work in progress: di!erentiable BOtied for e”cient
gradient-based optimization over high-dimensional design space X

(guided sampling)
maxx↑X a(x)
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Thank you!
park.ji won@gene.com
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