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Molecular design: a tale of correlated tails
↭ Goal: jointly optimize molecule for multiple competing properties
↭ Molecular properties tend to have long tails1 and tail correlations2

↭ LLM training and sampling are optimized for average-case behavior

1Jain et al., “Biophysical properties of the clinical-stage antibody landscape” (2017).
2Wang et al., “ADME properties evaluation in drug discovery: prediction of Caco-2 cell

permeability using a combination of NSGA-II and boosting” (2016).
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Multi-objective optimization

Problem : minx↑X

f (x)︷ ︸︸ ︷
[f1(x), . . . , fM(x)]T

3

When f is an expensive black-box function (e.g., wet lab protocol),
Bayesian optimization o!ers a sample-e”cient method.

3Konakovic Lukovic, Tian, and Matusik, “Diversity-guided multi-objective bayesian
optimization with batch evaluations” (2020).
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Multi-objective Bayesian optimization (MOBO)

Specify a probabilistic surrogate model f̂ approximating f .
Example: f̂ → GP where the spread of p(f̂ |D) captures the uncertainty
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Acquisition function as the decision-making engine
Acquisition function a

f̂ : X ↑ R scores each design with predicted
“usefulness,” to determine which design to measure next.
↭ exploration (of highly uncertain designs)
↭ exploitation (of designs believed to be optimal)
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Lab-in-the-loop molecular design

1. Fitting the surrogate on D = {(x (i), f (x (i))}N

i=1, to obtain p(f̂ |D)
2. Optimizing to obtain x

→ = argmax
x↑X a

f̂ (x)
3. Appending the resulting measurement: D ↓ D ↔ {(x→, f (x→))}
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Dominance operators: notation

How to compare vectors in Euclidean spaces when M > 1?
Assume minimization. For y = (y1, . . . , yM), z = (z1, . . . , zM) ↗ RM ,
↭ “z weakly dominates y” z ↫ y

↘≃ zi ⇐ yi i = 1, . . . , M

↭ “z strictly dominates y” z ⊋ y

↘≃ zi ⇐ yi ⇒i = 1, . . . , M and ⇑k : zk < yk

↘≃ z ↫ y and z ⇓= y
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Pareto front

For M > 1, a single optimal design may not exist.
Pareto front P is a collection of solutions that are not strictly dominated.

MOBO aims to obtain a finite approximation P̂ to the true Pareto front P.
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Quality indicators

Quality indicator I : 2Y
↑ R

evaluates the quality of approximation set P̂.
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Hypervolume indicator
Example: hypervolume (HV)4 of polytope dominated by P̂ and bounded
from above by a reference point

↭ HV → O(n↓ M

2 ↔) ↑ impractical for M>4 despite box decomposition5

↭ Sensitive to rescaling of the objectives, with di!erent natural units

4Emmerich, Deutz, and Klinkenberg, “Hypervolume-based expected improvement:
Monotonicity properties and exact computation” (2011).

5Yang et al., “A multi-point mechanism of expected hypervolume improvement for parallel
multi-objective bayesian global optimization” (2019).
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Content

Motivation and Background

↭ Drug design: jointly optimizing multiple (tailed) molecular properties
↭ A quick primer on multi-objective Bayesian optimization (MOBO)

↭ Quality indicator I : 2Y → R
↭ Acquisition function af̂ : X → R

Method

↭ Connection between the CDF ranks and the Pareto front
↭ BOtied: MOBO based on the CDF

Empirical results
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Probabilistic perspective
View molecules as random vectors X .
Let Y = f (X ), and consider the CDF of Y, FY .

FY1,...,YM
(y) =

∫ (y1,...,yM )

(↗↘,...,↗↘)
fY (s)ds = P[Y1 ⇐ y1, . . . , YM ⇐ yM ]
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Connection between the CDF and the Pareto front

Taking “horizontal slices” at ω ↗ [0, 1] gives the ω level line of FY ,
εL

F

ω = {y
≃
↗ G , FY (y ≃) = ω}.

The Pareto front belongs to the zero (ω = 0) level line of FY .6

6Binois, Rullière, and Roustant, “On the estimation of Pareto fronts from the point of view of
copula theory” (2015).
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Enter the CDF indicator
We propose ICDF(A) := miny↑A FY (y).

Weak Pareto compliance (Theorem 4.1)
For two approximation sets A and B,

A ⊋ B =≃ ICDF (A) ⇐ ICDF (B).
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E!cient fitting of CDF with vine copulas

We can pairwise decompose an M-dim copula density into a product of
M(M⇔1)/2 bivariate conditional densities (“pair copulas”) organized in a
sequence of trees (“vine”)7

→ O(nML), where L ↗ {1, . . . , M} is depth.
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7Joe, Multivariate Models and Dependence Concepts (1997).
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Model-based Pareto front
Domain knowledge or information from unpaired observations of Y

(without X associations) can be encoded in the choices of
↭ marginal distributions
↭ pair copula models
↭ vine structure
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Desirable invariance properties
CDF is invariant to arbitrary monotonic transformations of objectives,
while HV is very sensitive. Important for common unit conversions (e.g.,
linear µm ↑ nm, loglike KD ↑ pKD to remove tails)!
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Quality indicators to MOBO acquisition functions

Quality indicator I : 2Y
↑ R scores already-measured sets of molecules.

↑ How well did we exploit?
Acquisition function a

f̂ : X ↑ R scores each molecule based on
predictions by the surrogate f̂ .

↑ How can we balance exploration with exploitation?
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Quality indicators to MOBO acquisition functions

HV indicator → expected
hypervolume improvement (EHVI)

Emmerich, Deutz, and Klinkenberg,
“Hypervolume-based expected improvement:
Monotonicity properties and exact
computation” (2011)

CDF indicator → BOtied
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Empirical results

BOtied outperforms EHVI on standard synthetic benchmark problems for
MOBO, even in terms of HV.

Metric vs. iterations for two synthetic problems.
Metric: log(!HV) := log

(
HV (P) ↑ HV (P̂)

)
(lower is better)
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Empirical results
BOtied outperforms EHVI on a real-world dataset of cell permeability
measurements.

Metric vs. iterations for the modified Caco2 dataset
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Computational e!ciency
↭ Vine copula implementation makes BOtied very fast relative to EHVI

and joint entropy search (JES), both involving M-dim integrals
↭ BOtied has competitive wall-clock time with ParEGO, which

randomly scalarizes the objectives (e!ectively M = 1)
Per function evaluation:
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Summary: BOtied

BOtied is an acquisition function well suited for the joint optimization of
multiple biophysical properties in active molecular design.
↭ e”ciently implemented using vine copulas for M > 4 properties
↭ invariant to monotonic transformations of property values
↭ enables integration of domain knowledge in model-based

construction of Pareto front
Framework is general: hierarchical Bayesian inference, mixed-variable
outcomes, di!erentiable BOtied, integration into generative models for
guided generation
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↭ Park, J.W.
→, Tagasovska, N.→, Maser, M., Ra, S., and Cho, K.

“BOtied: Multi-objective Bayesian optimization with tied
multivariate ranks.” ICML (2024). arXiv: 2306.00344
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Motivation
↭ Many applications require prediction sets spanning multiple

correlated targets.
↭ Example: small molecule ADME characterization involves ↓50

endpoints with similar assays repeated across species. We require
uncertainties for lab prioritization.

↭ Consider a multi-target regression task given a dataset
{(X (i), Y

(i)
}i↑I of input features X

(i)
↗ X and labels Y

(i)
↗ Y,

viewed as |I| exchangeable samples drawn from PXY = Px ↖ PY |X .
↭ Given a miscoverage level ω, conformal prediction (CP) produces

marginally valid prediction sets #1↗ω with minimal assumptions.

Marginal validity8

A set #1↗ω(X→) is marginally valid if it contains the true response Y
→

w.p. at least 1 ⇔ ω:

P[Y →
↗ #1↗ω(X→)] ↙ 1 ⇔ ω.

8Weaker condition than conditional validity, P[Y → ↑ !1↑ω(X→) | X
→] ⇐ 1 ↗ ω
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Split conformal prediction9

1. Split data into proper training data Itrain and calibration data Ical.
2. Fit the underlying predictor f̂ : X ↑ Y on Itrain.
3. Define the non-conformity score (e.g., V (X , Y , f̂ ) = |Y ⇔ f̂ (X )|)

and evaluate it on Ical of size n.
4. Given target level ω, with Q1↗ω defined as the ∝(1 ⇔ ω)(n + 1)′-th

smallest of the scores, return the conformalized prediction set:

#1↗ω(X→) = {Y : V (X→, Y , f̂ ) ⇐ Q1↗ω}.
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9I’ll present the method in terms of split (inductive) CP for simplicity, but it applies to full
(transductive) and CV, jackknife variants too.



28 / 41

Naive extension to multiple targets

↭ Why not apply CP independently to each target?
↭ Marginal level 1 ⇔ ωj for each target j becomes more stringent in

order to satisfy the global coverage level of 1 ⇔ ω.
↭ e.g., 1 ↑ ωj =

↔
1 ↑ ω for d = 2

↭ (1 ↑ ω)1/d → 1: leads to large prediction sets as d increases
↭ n may not be large enough to accommodate extreme 1 ↑ ωj levels

↭ Joint modeling can yield more e”cient (tighter) prediction sets.0 2 4
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Multivariate quantiles for score vectors
↭ Canonical ordering does not exist in Rd for d > 1.10

↑ Estimate the
joint cumulative distribution function (CDF) of the scores,
F (s) = P[S1 ⇐ s1, . . . , Sd ⇐ sd ] = P[S ↫ s], where s ↗ Rd using
nonparametric vine copulas.

↭ Obtain the quantile as its generalized inverse,
F

↗1(p) = {s ↗ Rd : F (s) = p}.
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10Koltchinskii, “M-estimation, convexity and quantiles” (1997).
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Semiparametric one-step correction

We perform flexible density estimation to obtain F̂ . But the CP algorithm
only requires its low-dimensional functional, the 1 ⇔ ω quantile Q1↗ω.
↭ When estimating a functional $(F ) of the unknown distribution F ...
↭ a plug-in estimator $(F̂ ) is often biased.11

↭ c.f. “appeal” of Bayes to model all nuisance variables
↭ We can debias the plug-in using the e”cient influence function,

which captures the sensitivity of $(F ) to changes in F .

11Tsiatis, Semiparametric theory and missing data (2006).
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Semiparametric CP algorithm
Algorithm Semiparametric Conformal Prediction

1: Input: Labeled data I, test inputs Itest, target coverage level 1 ⇔ ω
2: Output: Prediction set #1↗ω(X→) for test input X

→

3: Split I into Itrain and Ical

4: Train the underlying algorithm f̂ on Itrain

5: Evaluate vector scores: S
(i)
j

↓ V

(
X

(i)
j

, Y
(i)
j

, f̂

)
⇒i ↗ Ical, j ↗ [d ]

6: Estimate the score distribution using the vine copula:
1. Compute the marginal ECDF F̂j ⇒j ↗ [d ]
2. Get uniform marginals U

(i)
j

↓ F̂j

(
S

(i)
j

)

3. Fit the copula Ĉ on U
(i)

7: Optimize for quantile: U
→

↓ arg minU↑[0,1]d ||U||1 s.t. Ĉ(U) ↙ 1 ⇔ ω

8: One-step correction: U1↗step ↓ U
→ + 1

n

∑
n

i=1 ϑ
Ĉ

(U(i))
9: Mapping back to score space: Q1↗ω ↓ [F̂ ↗1

1 (U→
1 ), . . . , F̂

↗1
d

(U→
d
)]

10: Return: #1↗ω(X→) =
{

Y ↗ Rd : V (X→, Y , f̂ ) ↫ Q1↗ω

}
, where

v ↫ w for v , w ↗ Rd if v1 ⇐ w1 . . . , vd ⇐ wd .
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Theoretical Guarantees
Theorem (Asymptotic exact coverage)
Our prediction set ”1→ω(X ↑) satisfies, for a test point X ↑, Y ↑,

P
[
Y ↑ ↗ ”1→ω(X ↑)

]
→ 1 ↑ ω as n → ↘.

→ Proof follows from consistency of the copula estimator (and thus its
quantile) and asymptotic normality of the one-step estimator.

Theorem (Approximate validity)
Suppose the total variation distance between F and F̂ is bounded by ε. That
is, sup

S
|F (S) ↑ F̂ (S)| ≃ ε. Then our prediction set ”1→ω is marginally valid at

the 1 ↑ ω ↑ ε level:

P[Y ↑ ↗ ”1→ω(X ↑)] ⇐ 1 ↑ ω ↑ ε,

with or without the one-step correction.

→ TV distance between F ↑ and F̂ upper-bounds the TV distance between
their quantiles as well as that between the quantile of F and the

one-step-corrected quantile of F̂ .
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Experimental Setup

↭ Task: Multi-target regression
↭ Datasets: Synthetic (d = 3, n = 96) and several real-world datasets

with d ↗ {6, 8, 16}.
↭ Underlying predictor: Multi-task Lasso point predictor12 (or

conditional density estimator, in the Appendix).
↭ Metrics:

↭ Coverage: Empirical frequency of the true label in the prediction set.
↭ E!ciency: (Log-)Volume of the prediction set (smaller is better).

12Tibshirani, “Regression shrinkage and selection via the lasso” (1996).
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Comparison

↭ Independent: univariate calibration applied independently to each
target at the (1 ⇔ ω)1/d level

↭ Scalar score: calibration applied to a scalar score defined as the L2
norm of the prediction error V (X , Y , f̂ ) = ||Y ⇔ f̂ (X )||213

↭ Empirical copula: fit on vector scores with the constraint that
U

→
1 = . . . = U

→
d

14

↭ Proposed Methods (Plug-in and Corrected): Yield nearly exact
coverage and improved e”ciency.

13Yields prediction sets shaped as d-dimensional balls. The L1 norm would yield cross-polytopes
(d-dimensional generalization of diamonds

14Messoudi, Destercke, and Rousseau, “Copula-based conformal prediction for multi-target
regression” (2021).
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One-step correction helps
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Figure: Penicillin production simulator dataset15 with d = 3, n = 96

15Liang and Lai, “Scalable bayesian optimization accelerates process optimization of penicillin
production” (2021).
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Empirical copula has high variance
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points, some shown in gray dots.
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Results on real-world datasets

Table: Mean ± standard error across five seeds. Target coverage is 0.9.

Method Stock
16 (d = 6, n = 63) Caco2+

17 (d = 6, n = 137) rf1
18 (d = 8, n = 225)

Coverage E”ciency ↓ Coverage E”ciency ↓ Coverage E”ciency ↓

Independent 0.90 ± 0.01 ↑2.4 ± 0.2 0.95 ± 0.01 12.2 ± 0.1 0.96 ± 0.01 29.2 ± 0.5
Scalar score 0.90 ± 0.01 ↑1.8 ± 0.3 0.92 ± 0.01 28.3 ± 0.1 0.92 ± 0.00 27.7 ± 0.3
Empirical copula 0.50 ± 0.05 ↑4.7 ± 0.5 0.42 ± 0.08 8.4 ± 0.4 0.42 ± 0.12 21.2 ± 2.6
Plug-in (ours) 0.87 ± 0.02 ↑2.9 ± 0.2 0.90 ± 0.01 11.0 ± 0.1 0.91 ± 0.01 25.0 ± 0.2
Corrected (ours) 0.90 ± 0.02 ↑2.8 ± 0.2 0.93 ± 0.01 11.5 ± 0.2 0.91 ± 0.01 25.1 ± 0.3

Method rf2 (d = 8, n = 225) scm1d (d = 16, n = 448) scm20d (d = 16, n = 448)
Coverage E”ciency ↓ Coverage E”ciency ↓ Coverage E”ciency ↓

Independent 0.96 ± 0.01 29.2 ± 0.5 0.96 ± 0.01 114.1 ± 0.4 0.96 ± 0.01 114.1 ± 0.4
Scalar score 0.92 ± 0.01 27.7 ± 0.3 0.89 ± 0.01 109.0 ± 0.3 0.89 ± 0.01 109.0 ± 0.3
Empirical copula 0.42 ± 0.12 21.2 ± 2.6 0.75 ± 0.05 108.5 ± 0.8 0.75 ± 0.05 108.5 ± 0.8
Plug-in (ours) 0.90 ± 0.01 25.0 ± 0.2 0.92 ± 0.01 111.4 ± 0.1 0.92 ± 0.01 111.4 ± 0.2
Corrected (ours) 0.91 ± 0.01 25.1 ± 0.3 0.91 ± 0.01 110.7 ± 0.2 0.90 ± 0.01 110.6 ± 0.2

16Liu and Yeh, “Using mixture design and neural networks to build stock selection decision
support systems” (2017).

17Wang et al., “ADME properties evaluation in drug discovery: prediction of Caco-2 cell
permeability using a combination of NSGA-II and boosting” (2016); Park et al., “BOtied:
Multi-objective Bayesian optimization with tied multivariate ranks” (2023).

18Spyromitros-Xioufis et al., “Multi-target regression via input space expansion: treating targets
as inputs” (2016).
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Unlocking missing-at-random (MAR) data

Training and calibration data often have missing observations, especially
as d gets larger. If we only take instances for which we observe both, we

end up with a biased quantile estimate. We can do missingness
imputation with copulas19.

Common scenario: target labels are missing at random (MAR), such
that the labels for target 2 are only observed when target 1 observations

exceed a certain value.

19Feldman and Kowal, “Nonparametric Copula Models for Multivariate, Mixed, and Missing
Data” (2024).
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Summary: semiparametric conformal prediction

↭ We introduced the semiparametric conformal calibration scheme,
adapted for design settings with many correlated molecular

properties.
↭ By combining nonparametric vine copulas with a one-step estimator,

our method yields e”cient prediction sets by modeling the tails
near the 1 ⇔ ω joint quantile of interest.
↭ Baselines tend to overcover or su#er from high variance in the tails.

↭ It guarantees asymptotically exact coverage and approximate
validity in finite samples.

↭ A particular copula model allows working with missing-at-random

observations.
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Power of modeling the tails in AI-driven optimization
Surrogate function (multivariate regression) ↑ pY |X
↭ BOtied population distribution (density estimation) ↑ pY

↭ SemiCP population distribution (density estimation) ↑ p
V (X ,Y ,f̂ )



41 / 41

Thank you!
! jiwoncpark.github.io ! jiwoncpark " park.ji won@gene.com
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