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Based on:

» Park, J.W.*, Tagasovska, N.*, Maser, M., Ra, S., and Cho, K.
“BOtied: Multi-objective Bayesian optimization with tied
multivariate ranks.” ICML (2024). arXiv: 2306.00344

» Park, J.W., Tibshirani, R., and Cho, K. “Semiparametric conformal
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Molecular design: a tale of correlated tails
» Goal: jointly optimize molecule for multiple competing properties
» Molecular properties tend to have long tails® and tail correlations?
» LLM training and sampling are optimized for average-case behavior

« Lipophilicity
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1 Jain et al., “Biophysical properties of the clinical-stage antibody landscape” (2017).
2Wang et al., “ADME properties evaluation in drug discovery: prediction of Caco-2 cell
permeability using a combination of NSGA-Il and boosting” (2016).
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Multi-objective optimization

Problem : min,cx [f(x),..., fu(x)]"

When f is an expensive black-box function (e.g., wet lab protocol),
Bayesian optimization offers a sample-efficient method.

3Konakovic Lukovic, Tian, and Matusik, “Diversity-guided multi-objective bayesian
optimization with batch evaluations” (2020).



4/41

Multi-objective Bayesian optimization (MOBO)

Specify a probabilistic surrogate modelj‘ approximating f.
Example: f ~ GP where the spread of p(f|D) captures the uncertainty
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Acquisition function as the decision-making engine

Acquisition function 2" : X — R scores each design with predicted
“usefulness,” to determine which design to measure next.

» exploration (of highly uncertain designs)

» exploitation (of designs believed to be optimal)
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Lab-in-the-loop molecular design

Sampling Multivariate inference Selection

Generative models Probabilistic surrogate models - Ranking/scoring model
~millions of predictive

designs distributions

100s of
selected

O 3 designs
— Wet-lab evaluation

Update models
S Ei
‘ T
L q\

1. Fitting the surrogate on D = {(x(), f(x(D)}N | to obtaln p(f|D)
2. Optimizing to obtain x* = argmax, y af(x)

3. Appending the resulting measurement: D < D U {(x*, f(x*))}
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Dominance operators: notation

How to compare vectors in Euclidean spaces when M > 17
Assume minimization. For y = (y1,...,ym),z = (z1,...,2m) € RM,
» “z weakly dominates y" z x5 y

— z<yi=1....M
» “z strictly dominates y” z <y

<~ zi<y;Vi=1,...,M and 3k : zx < yx

< zxyandz#y
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Pareto front

For M > 1, a single optimal design may not exist.
Pareto front P is a collection of solutions that are not strictly dominated.

0

—100
O Feasible solutions G
© Non-dominated solutions

—200
Approx. Pareto front

< - Polar surface area

—300

< - Cell permeability
MOBO aims to obtain a finite approximation P to the true Pareto front P.
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Quality indicators

Quality indicator /:2Y - R
evaluates the quality of approximation set P.
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Hypervolume indicator

Example: hypervolume (HV)* of polytope dominated by P and bounded
from above by a reference point

Hypervolume
O Candidates

B Reference point

Dominated
O region
5 —

Objective 1

Objective 2

True Pareto front
(unknown)

“Emmerich, Deutz, and Klinkenberg, “Hypervolume-based expected improvement:
Monotonicity properties and exact computation” (2011).

5Yang et al., “A multi-point mechanism of expected hypervolume improvement for parallel
multi-objective bayesian global optimization” (2019).
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Hypervolume indicator: limitations

Example: hypervolume (HV)* of polytope dominated by P and bounded
from above by a reference point

» HV ~ O(nl%) — impractical for M>4 despite box decomposition®

Hypervolume
O Candidates
B Reference point
o~
o
= Dominated
_f:’_)‘ O region
=)
© O
O \ True Pareto front
(unknown)
Objective 1

“Emmerich, Deutz, and Klinkenberg, “Hypervolume-based expected improvement:
Monotonicity properties and exact computation” (2011).

5Yang et al., “A multi-point mechanism of expected hypervolume improvement for parallel
multi-objective bayesian global optimization” (2019). = = = =
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Hypervolume indicator: limitations

Example: hypervolume (HV)* of polytope dominated by P and bounded
from above by a reference point

» HV ~ O(nl%) — impractical for M>4 despite box decomposition®
» Sensitive to rescaling of the objectives, with different natural units

Hypervolume
O Candidates
B Reference point
o~
(3
= Dominated
_f:i O region
=)
)
\ True Pareto front
(unknown)
Objective 1

“Emmerich, Deutz, and Klinkenberg, “Hypervolume-based expected improvement:
Monotonicity properties and exact computation” (2011).

5Yang et al., “A multi-point mechanism of expected hypervolume improvement for parallel
multi-objective bayesian global optimization” (2019).
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Probabilistic perspective
View molecules as random vectors X.
Let Y = f(X), and consider the CDF of Y, Fy.
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Probabilistic perspective

View molecules as random vectors X.
Let Y = f(X), and consider the CDF of Y, Fy.

(Y15--yM)
Fy,,..vu(y) = / fy(s)ds =P[Y1 < y1,..., Ym < ym]
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Connection between the CDF and the Pareto front

Taking “horizontal slices” at « € [0, 1] gives the « level line of Fy,
oLt ={y' € G,Fy(y') = a}.
The Pareto front belongs to the zero (a = 0) level line of Fy .

SBinois, Rulliere, and Roustant, “On the estimation of Pareto fronts from the point of view of
copula theory” (2015).



13/41

Connection between the CDF and the Pareto front

Taking “horizontal slices” at « € [0, 1] gives the « level line of Fy,
oLt ={y' € G,Fy(y') = a}.
The Pareto front belongs to the zero (a = 0) level line of Fy .
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SBinois, Rulliere, and Roustant, “On the estimation of Pareto fronts from the point of view of
copula theory” (2015). o = ) =




Enter the CDF indicator

We propose Icpr(A) == minyca Fy(y).
Weak Pareto compliance (Theorem 4.1)

For two approximation sets A and B,

A < B — ICDF(A) < ICDF(B)-

Hypervolume CDF Scores

Multivariate Ranks

Objective 2

Objective 1 Objective 1 Objective 1

{ Candidates . _. Levellines of CDF
C Dominated region

B Reference point N True Pareto front (unknown)
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Efficient fitting of CDF with vine copulas

We can pairwise decompose an M-dim copula density into a product of
M(M—1)/2 bivariate conditional densities (“pair copulas”) organized in a
sequence of trees (“vine”)’ ~ O(nML), where L € {1,..., M} is depth.

" - - - _
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joint distribution o« marginals + copula £3
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conditional
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GEE)
raps3

£(x1,%X2,X3,X4) = Cryp3°C130-Coapa-Cia-C23-Caa-f1 (x1)fa (x2) f3(x3) fa (xg)

7Joe, Multivariate Models and Dependence Concepts (1997).
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Model-based Pareto front

Domain knowledge or information from unpaired observations of Y
(without X associations) can be encoded in the choices of

» marginal distributions
» pair copula models

» vine structure
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 — Cell permeability + Lipoplilicity < — Polar surface arc: £(x1,%2,X3,%4) = Craps-Crap-Coapp-erz-ca3-cas-fi (x1) f2(x2) 3 (xa) 4 (xa)
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Desirable invariance properties
CDF is invariant to arbitrary monotonic transformations of objectives,
while HV is very sensitive. Important for common unit conversions (e.g.,
linear um — nm, loglike KD — pKD to remove tails)!

HV: Original HV: Transformed as f} = arctan( f,
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Quality indicators to MOBO acquisition functions

Quality indicator / : 2Y¥ — R scores already-measured sets of molecules.
— How well did we exploit?
Acquisition function a’ : X — R scores each molecule based on
predictions by the surrogate f
— How can we balance exploration with exploitation?

A
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Quality indicators to MOBO acquisition functions

Objective 2

Objective 2
Objective 2

Objective 1 Objective 1 Objective 1

HV indicator — expected
hypervolume improvement (EHVI)

Emmerich, Deutz, and Klinkenberg,

“Hypervolume-based expected improvement:

Monotonicity properties and exact
computation” (2011)

Objective 2
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CDF indicator — BOtied

19/41



Content

20 / 41

Background
Method

» Connection between the CDF ranks and the Pareto front
» BOtied: MOBO based on the CDF
Empirical results



Empirical results

MOBO, even in terms of HV.

DTLZ2 (d=6, M=4, q=1)

20

BOtied outperforms EHVI on standard synthetic benchmark problems for
Penicillin (d=7, M=3, g=1)

DTLZ2 (d=7, M=6, q=1)
0

10 60
Iteration

0 20 40
—— BOtied vl = -
—— BOtied v2

60
Iteration
PES

MES

80

JES

=== gNParEGO

QNEHVI
Metric vs. iterations for two synthetic problems.

Metric: log(AHV) := log (HV(P) — HV(P))

(lower is better)
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Empirical results

BOtied outperforms EHVI on a real-world dataset of cell permeability

measurements.
Caco2+ (d=2133, M=3, ¢q=4)
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Computational efficiency

» Vine copula implementation makes BOtied very fast relative to EHVI
and joint entropy search (JES), both involving M-dim integrals

» BOtied has competitive wall-clock time with ParEGO, which

randomly scalarizes the objectives (effectively M = 1)

Per function evaluation:

(

Wall-clock time (s)

—
S
=

BC (M=2) DTLZ (M=6) DTLZ (M=8)
Dataset

BOtied v1
BOtied v2
NEHVI
ParEGO
JES
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Summary: BOtied

BOtied is an acquisition function well suited for the joint optimization of
multiple biophysical properties in active molecular design.

» efficiently implemented using vine copulas for M > 4 properties
» invariant to monotonic transformations of property values

P enables integration of domain knowledge in model-based
construction of Pareto front
Framework is general: hierarchical Bayesian inference, mixed-variable
outcomes, differentiable BOtied, integration into generative models for
guided generation
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» Park, J.W.*, Tagasovska, N.*, Maser, M., Ra, S., and Cho, K.
“BOtied: Multi-objective Bayesian optimization with tied
multivariate ranks.” ICML (2024). arXiv: 2306.00344

» Park, J.W., Tibshirani, R., and Cho, K. “Semiparametric conformal
prediction.” AISTATS (2025). arXiv: 2411.02114
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https://arxiv.org/abs/2306.00344
https://arxiv.org/abs/2411.02114
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Motivation
» Many applications require prediction sets spanning multiple
correlated targets.

» Example: small molecule ADME characterization involves ~50
endpoints with similar assays repeated across species. We require
uncertainties for lab prioritization.

» Consider a multi-target regression task given a dataset
{(XD y)};c7 of input features X() € X and labels Y() € ),
viewed as |Z| exchangeable samples drawn from Pxy = P, x Py/x.

> Given a miscoverage level o, conformal prediction (CP) produces
marginally valid prediction sets I'1_,, with minimal assumptions.

Marginal validity®

A set [1_o(X*) is marginally valid if it contains the true response Y*
w.p. at least 1 — a:

P[Y* €T1_o(X*)] > 1— .

8Weaker condition than conditional validity, P[Y™ € T1_o(X™) |X*] 291 — «
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Split conformal prediction®
1. Split data into proper training data Z,,;, and calibration data Z,;.
2. Fit the underlying predictor Fox— Y on Lirain.
3. Define the non-conformity score (e.g., V(X, Y, f) =Y — f(X)|)
and evaluate it on Z., of size n.

4. Given target level «, with Q;_,, defined as the [(1 — «)(n+ 1)]-th
smallest of the scores, return the conformalized prediction set:

Moa(X*) ={Y : V(X" Y, F) < Qi_a}.

R - .
1 e
10 i 0 12.5 e initial pred P
1 . H - Ve ]
0s i 0.8 - 00 conf. mt‘elvéa}l',. . I:
. ‘ g sl 1T
06 | 06 = l .{,‘ e ]
£ | | S 75 s ‘f 1
Jat i 0.4 g K¢ 1
0.4 i . a g -
| 5.0 ;g;
0.2 0.2 At ]
| (dr . (b) -
0.0t g > : -
] 2 4 ’ 5 10
Residual Label

91'll present the method in terms of split (inductive) CP for simplicity, but it applies to full
(transductive) and CV, jackknife variants too.
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Naive extension to multiple targets

» Why not apply CP independently to each target?

» Marginal level 1 — «; for each target j becomes more stringent in
order to satisfy the global coverage level of 1 — a.

> eg,l—aj=v1—-aford=2
» (1—a)Y? — 1: leads to large prediction sets as d increases
» n may not be large enough to accommodate extreme 1 — «; levels

» Joint modeling can yield more efficient (tighter) prediction sets.

label
X

Target 2

label

o
T

Residual (target 2)

o
o

2 1 conf. region (-
H . . .

0 100 200 0 200
Residual (target 1) Target 1
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Multivariate quantiles for score vectors

» Canonical ordering does not exist in RY for d > 1.19 — Estimate the
joint cumulative distribution function (CDF) of the scores,
F(s) =P[S1 < s1,...,54 < sq] =P[S < s], where s € R? using
nonparametric vine copulas.

» Obtain the quantile as its generalized inverse,
F~Y(p) = {s € R?: F(s) = p}.

-- VI a quantile

H (b) (ay
(O]
10 20 0.00 0.25 0.50 0.75 1.00
Residual (target 1) ECDF (target 2)

Koltchinskii, “M-estimation, convexity and quantiles” (1997).
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Semiparametric one-step correction

We perform flexible density estimation to obtain F. But the CP algorithm
only requires its low-dimensional functional, the 1 — « quantile Q1_,.

» When estimating a functional W(F) of the unknown distribution F...
> a plug-in estimator W(F) is often biased.!
» c.f. “appeal” of Bayes to model all nuisance variables

» We can debias the plug-in using the efficient influence function,
which captures the sensitivity of W(F) to changes in F.

HTsiatis, Semiparametric theory and missing data (2006).



Semiparametric CP algorithm

Algorithm Semiparametric Conformal Prediction

1:

@ 9 s wbN

10:

Input: Labeled data Z, test inputs Zi.g, target coverage level 1 — «
Output: Prediction set '1_,(X*) for test input X*
Split Z into Zirain and Zea .
Train the underlying algorithm f on Ziain
Evaluate vector scores: SJ-(i) +~—V ()<j(i), Yj(i), ?) Vi € Zear,j € [d]
Estimate the score distribution using the vine copula:

1. Compute the marginal ECDF I:_J Vj € [d]

2. Get uniform marginals (Jj(") — F (Sj("))

3. Fit the copula C on U®)
Optimize for quantile: U* < argminyepo 3¢ || U[[1 s.t. C(U)>1—a
One-step correction: Uj_gtep ¢ U* + % Sy 1/)@(U(i))
Mapping back to score space: Qo < [F;*(U), ..., F7H(UD)]
Return: T;_,(X*) = {Y € RY: V(XHY, IA‘) < Qi_a } where
vwforv,weR¥ifvi <wi...,vg < wy.

31/4
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Theoretical Guarantees
Theorem (Asymptotic exact coverage)
Our prediction set T1_o(X™) satisfies, for a test point X*, Y™,

]P’[Y* € rl_a(X*)] —1—a asn— .

— Proof follows from consistency of the copula estimator (and thus its
quantile) and asymptotic normality of the one-step estimator.

Theorem (Approximate validity)

Suppose the tota! variation distance between F and F is bounded by €. That
is, sups |F(S) — F(S)| < e. Then our prediction set [1_q is marginally valid at
the 1 — o — € level:

PlY" el-o(X")]>1—-a—c¢,
with or without the one-step correction.

s TV distance between F* and F upper-bounds the TV distance between
their quantiles as well as that between the quantile of F and the
one-step-corrected quantile of F.
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Experimental Setup

» Task: Multi-target regression

» Datasets: Synthetic (d = 3, n = 96) and several real-world datasets
with d € {6,8,16}.

» Underlying predictor: Multi-task Lasso point predictor'? (or
conditional density estimator, in the Appendix).

» Metrics:

» Coverage: Empirical frequency of the true label in the prediction set.
» Efficiency: (Log-)Volume of the prediction set (smaller is better).

2Tibshirani, “Regression shrinkage and selection via the lasso” (1996).
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Comparison

» Independent: univariate calibration applied independently to each
target at the (1 — a)'/9 level

» Scalar score: calibration applied to aAscaIar score defined as the L,
norm of the prediction error V(X, Y, f) = ||Y — f(X)||.3

» Empirical copula: fit on vector scores with the constraint that
Uf=...=U;"

» Proposed Methods (Plug-in and Corrected): Yield nearly exact
coverage and improved efficiency.

BYields prediction sets shaped as d-dimensional balls. The L; norm would yield cross-polytopes
(d-dimensional generalization of diamonds

14Messoudi, Destercke, and Rousseau, “Copula-based conformal prediction for multi-target
regression” (2021).
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One-step correction helps

0.9F ---- Exact coverage
0.8F ¢  Plug-in (ours) +- E
0.7F Corrected (ours) I 7
0.6
0.5
0.4 \d E
0.3 £33 t E
0.2 £ E
01F 4 ]

T T T T
1
-o-!
1
1 1

Empirical coverage

0.1 02 03 04 05 0.6 0.7 0.8 0.9
Nominal coverage, 1 - a

Figure: Penicillin production simulator dataset'® with d = 3, n = 96

15Liang and Lai, “Scalable bayesian optimization accelerates process optimization of penicillin
production” (2021). o - = =



Empirical copula has high variance

1.00

Pseudo obs. of score (time)

[]

0.7

Pseudo obs. of score (yield)

Figure: At the 0.9 level, the estimated curve (dashed black) falls between the
true curve (solid black) and empirical (solid gray) curve computed from 96

points, some shown in gray dots.

.
0.8

I
0.9

1.0
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Results on real-world datasets

Table: Mean =+ standard error across five seeds. Target coverage is 0.9.

Method Stock!0 (d = 6, n = 63) Caco2+17 (d = 6, n = 137) 118 (d = 8, n = 225)
Coverage Efficiency | Coverage Efficiency | Coverage Efficiency |
Independent 0.90 + 0.01 —2.44+0.2 0.95 + 0.01 12.2 + 0.1 0.96 4+ 0.01 29.2 £ 0.5
Scalar score 0.90 + 0.01 —1.8+0.3 0.92 £+ 0.01 28.3+0.1 0.92 £ 0.00 27.7 £ 0.3
Empirical copula 0.50 + 0.05 —4.7+ 0.5 0.42 £+ 0.08 8.4 +0.4 0.42 £ 0.12 21.2+26
Plug-in (ours) 0.87 £ 0.02 —2.9+0.2 0.90 £ 0.01 11.0 £ 0.1 0.91 £ 0.01 25.0 £0.2
Corrected (ours) 0.90 £ 0.02 —2.8+0.2 0.93 £ 0.01 11.5 £ 0.2 0.91 £ 0.01 25.1£0.3
Method f2 (d = 8, n = 225) scmld (d = 16, n = 448) sem20d (d = 16, n = 448)
Coverage Efficiency | Coverage Efficiency | Coverage Efficiency |
Independent 0.96 £ 0.01 29.2 £ 0.5 0.96 £ 0.01 114.1 £ 0.4 0.96 £ 0.01 114.1 £ 0.4
Scalar score 0.92 + 0.01 27.7 £ 0.3 0.89 + 0.01 109.0 + 0.3 0.89 4 0.01 109.0 + 0.3
Empirical copula 0.42 £+ 0.12 21.2 + 2.6 0.75 £ 0.05 108.5 4+ 0.8 0.75 £ 0.05 108.5 + 0.8
Plug-in (ours) 0.90 + 0.01 25.0 + 0.2 0.92 £ 0.01 111.4 £ 0.1 0.92 4 0.01 111.4 £+ 0.2
Corrected (ours) 0.91 + 0.01 25.1+ 0.3 0.91 + 0.01 110.7 £ 0.2 0.90 £+ 0.01 110.6 + 0.2

iy and Yeh, “Using mixture design and neural networks to build stock selection decision
support systems” (2017).

YWang et al., “ADME properties evaluation in drug discovery: prediction of Caco-2 cell
permeability using a combination of NSGA-Il and boosting” (2016); Park et al., “BOtied:
Multi-objective Bayesian optimization with tied multivariate ranks” (2023).

18Spyromitros—Xioufis et al., “Multi-target regression via input space expansion: treating targets
as inputs” (2016).



Unlocking missing-at-random (MAR) data

Training and calibration data often have missing observations, especially
as d gets larger. If we only take instances for which we observe both, we
end up with a biased quantile estimate. We can do missingness
imputation with copulas®®.

Common scenario: target labels are missing at random (MAR), such
that the labels for target 2 are only observed when target 1 observations
exceed a certain value.

9Feldman and Kowal, “Nonparametric Copula Models for Multivariate, Mixed, and Missing
Data” (2024).
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Summary: semiparametric conformal prediction

» We introduced the semiparametric conformal calibration scheme,
adapted for design settings with many correlated molecular
properties.

» By combining nonparametric vine copulas with a one-step estimator,
our method yields efficient prediction sets by modeling the tails
near the 1 — « joint quantile of interest.

» Baselines tend to overcover or suffer from high variance in the tails.
» |t guarantees asymptotically exact coverage and approximate
validity in finite samples.

» A particular copula model allows working with missing-at-random
observations.
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Power of modeling the tails in Al-driven optimization

Surrogate function (multivariate regression) — py|x
» BOtied population distribution (density estimation) — py
> SemiCP population distribution (density estimation) — py(x y 7

I DONT KNOW HoW To PROPAGATE
ERROR CORRECTLY, S0 I JUST PUT
ERROR BARS ON ALL MY ERROR BARS.
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Thank you!

@ jiwoncpark.github.io W jiwoncpark & park.ji_won@gene.com
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